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ABSTRACT 

Three target types, namely T72, ZSU 23-4 and BMP-2 were measured in a tower/turntable configuration 
in several articulations each. A set of geometric, statistical, structural and polarimetric features is used to 
study the robustness of classification. Based on the Kolmogoroff-Smirnov distance between histograms a 
metric is defined that at the same time allows to quantify intra-class robustness and inter-class 
separability for an individual feature. For sets of several features, a simple classification approach in 
connection with a reference confusion matrix allows to assess the robustness of classification. It is 
demonstrated, that averaging the feature reference over all available target articulations improves the 
classification performance as compared to a reference that is based on one articulation only. Also, it is 
shown that in most cases, the classification is the better the more precisely the target aspect angle can be 
estimated independently.  -- The paper reports work that is done in the framework of the NATO RTO/SET-
069 working group. 

1  INTRODUCTION 

Features are a means of statistical pattern recognition that ATR algorithms use to discriminate ground 
targets from the surrounding clutter background and, subsequently, to sort potential targets into one of 
several target classes (including the non-target case). Problems for ATR arise from the specular nature of 
radar imagery because small changes to the configuration of targets can result in significant changes to the 
resulting target signature [3][4].  This adds to the challenge of constructing a classifier that is both robust 
to changes in target configuration and target aspect, and which is capable of generalizing to previously 
unseen targets. 

 ATR features have to provide at the same time good inter-class separability and good intra-class stability. 
The reference vectors usually are obtained from former measurements of the respective target either on a 
turntable or by means of SAR and are stored in look-up tables. The test vectors are obtained on-line while 
the seeker is passing over the target area. In order for the ATR to provide reliable results both the test 
vectors and the reference vectors have to show robustness against target modifications, preferably 
including camouflage, different target realizations or articulations, slight changes in depression angle, 
aspect angle changes that occur during the time-on-target, and many more. Robustness has to be 
understood in the sense that the statistics of the test and reference vectors either remain unchanged, or that 
their changes are taken into account appropriately, and that the estimates that are obtained of these vectors 
are representative for this statistics. As a consequence, the classification performance should not be 
degraded. In order to obtain the desired robustness it is of great importance to eliminate those target 
variations that can be handled beforehand, the most crucial one being the aspect angle dependence. The 
analysis of tower/turntable measurements on typical targets shows that feature values as a function of 
aspect angle do not only fluctuate around a stable mean, but that their statistics themselves, i.e. mean and 
standard deviation, are a function of aspect angle. It has been demonstrated before [1][2] how important an 
independent determination of the target aspect angle is. Among the methods most commonly used are the 
Hough transform or a process of pattern matching [1] [5]. 
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Three different military vehicles were measured in a tower/turntable configuration at 35GHz with 
800MHz bandwidth using the fully polarimetric MEMPHIS radar. Each vehicle was measured in several 
different articulations (hatches open or closed, turret turned to different positions) while its positioning on 
the turntable remained unchanged. All data underwent an identical polarimetric calibration to warrant 
optimal comparability. 

As a means to assess feature robustness several metrics were developed to quantify the results. Two 
approaches are compared:  

•  the separability between feature histograms (using the Kolmogoroff-Smirnow distance as a 
distance measure) 

• analysis of confusion matrices based on a generic classification scheme  

Typical features of various types (geometric, statistical, polarimetric, scatterer power, structural etc.) are 
used, each one depending on one or two parameters that allow optimization. 

The paper is organised in  five sections. The first one gives a short description of the measurement setup. 
In the second, the features used for classification are described in some detail. Next, the relationship 
between robustness and inter-class separability is analysed. Section four shows how confusion matrices 
can be used to characterize robustness. Finally, some thoughts on the aspect angle behaviour of the 
features are presented. 

2  MEASUREMENT SETUP 

For the measurements that are analysed here, the FGAN operated fully polarimetric MEMPHIS radar [8] 
was located on top of a tower at a height of 47 meters. The three targets (T72, ZSU 23-4 and BMP)  were 
positioned on a turntable at a distance of about 154m, giving rise to a slant range of 161m and a depression 
angle of 17°. 

The MEMPHIS 35 GHz radar transmitted linear V polarisation, and received H and V simultaneously thus 
providing orthogonal VV and VH channels. The basic waveform is a linear chirp with 200 MHz 
bandwidth. In order to achieve higher range resolution, this chirp is combined with a stepped frequency 
mode with 8 steps of 100 MHz increment [9]. The resulting maximum processing bandwidth thus is 800 
MHz. However, as this requires a 320-point DFT (2.5 MHz frequency sampling step), here only a reduced 
bandwidth of 640 MHz was processed allowing the use of a 256-point FFT. The resulting range resolution 
is about 0.24m which is sufficient for this kind of ATR analysis [10]. 

A full revolution of the turntable took place in 130 seconds, the effective PRF was 2300s-1/8 such that a 
128-point Doppler FFT results in a cross-range resolution of 0.2m, sufficiently close to the desired square-
pixel case. The targets were measured in the following configurations: the turret of the T-72 was 
positioned 20° to the left, and in 30° intervals from 0° (forward) to 180° (backward). In the case of the 
ZSU 4 different and of the BMP 5 different combinations of shut/closed driver’s, commander’s and turret 
hatches were realized, cf.[6]. 

3  CALCULATION OF THE CLASSIFICATION FEATURES 

All feature values were computed on the basis of 2-D ISAR images with 0.24m (range) by 0.2m (cross-
range) pixels. They were taken from a list prepared by the NATO SET-TG14 working group [7]. For 
geometrical, statistical, and structural features, the total power map (|VV|2 + |VH|2 ) was used, for the 
polarimetric features the VV and VH power map were used in parallel.  
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• ft1 = range extent of 20 strongest scatterers 

• ft2 = cross-range extent of 20 strongest scatterers 

• ft3 = ft1*ft2 (= area of the “minimum bounding rectangle” (MBR)) 

• ft4 = mean/std.dev.(total power|MBR) 

• ft5 = (powersum 10 strongest scatterers) /powersum(MBR) 

• ft6 = log10(pmax(1)/pmax(5)) (ratio between strongest and 5th strongest scatterer within the 
MBR) 

• ft7 = log10(pmax(1)/pmin)|MBR    (ratio between strongest and weakest scatterer within the 
MBR) 

• ft8 = max(pvv/pvh)|dB - min(pvv/pvh)|dB  (span of parallel/cross channel separation) 

• ft9 = slope(pmax vs.dif)|dB  

• ft10 = shift(pmax vs.dif)|dB 
(in ft9 and ft10 “pmax” stands for the 10 strongest scatters within the MBR, sorted in descending order, 
“dif” contains the related channel differences pvv/pvh, shift and slope refer to a least squares line fit that is 
applied to these 10 pairs of values). 

The rationale for the selection of this set of features is not that they constitute a “best” set. Rather they are 
considered to be a “generic” set with representatives from several feature types, namely geometric, 
statistical, scatterer power related or structural, and polarimetric. Of course, some of these features are 
more or less correlated with one another. This can be assessed either by determining all the mutual cross 
correlation coefficients, or by a principal component analysis (PCA, [11]). Therefore, only certain subsets 
out of these 10 features will form meaningful sets of ATR features.  

4  INTRA-CLASS ROBUSTNESS VS. INTER-CLASS SEPARABILTY 

The basic test of robustness is to analyse how strongly the feature statistics is changed when the respective 
target is modified. It is clear that each feature as a function of aspect angle will reflect any target 
modifications under those angles where they become effective. But in the ideal case, the overall statistics 
as measured over a certain aspect angle interval, should only slightly be affected, i.e. the probability 
density function (pdf) should be more or less the same. 

There is a duality between intra-class robustness and inter-class separabilty. The more tolerant a feature or 
set of features or a classification scheme is towards different articulations of a certain target type, the less 
likely it is to precisely discriminate between a large number of different target types. 

A convenient way to compare two probability density functions (pdf’s) or histograms is by determining 
the Kolmogoroff-Smirnov distance (KSD) which is defined as the maximum difference between the two 
pertinent cumulative distributions: 

Let p1(f) and p2(f) be two probability density functions (pdf’s) of a certain feature “f” obtained from two 
different vehicles. The pertinent distribution functions then are  

∫
∞−

=
f

ii dffpfP ')'()(     (i=1,2) 

and hence  
KS(p1, p2) = maxf |P1(f) – P2(f)|. 
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By definition, the KSD can vary between 0 and 1, where “0” means identity, and “1” means complete 
separation without any overlap.   

Fig. 1 shows as an example the power 
feature #6 for the five  different 
articulations of the BMP. As one sees, 
the polar curves in some cases may 
differ considerably e.g. in the interval 
80° to 120° or near 330°. However, the 
histograms look rather similar. Thus, at 
first sight this seems to be a candidate 
for a robust feature. 

On the other hand, robustness is only 
one criterion that an ATR feature has to 
fulfill. Good discrimination w.r.t. other 
targets is another important one, and 
both properties have to be examined and 
eventually a trade-off has to be made. 

Let us now quantify the similarity 
between the pdfs of different target 
articulations by means of the KSD. This 
is best done using a table that lists all 
possible combinations of pairs of targets 

for a selected feature. Let us again look at feature #6 (Table 1). The KSD between pairs of different T72 
are fairly low, mostly less than 0.1 with some outliers up to 0.144, which suggests a few major 
differences. 

For pairs of ZSU or BMP, values are below 0.086 and hence close to zero as required. In the areas that are 
dark grey-shaded we have pairs of different target types. Here, in the ideal case we would expect values 
close to 1, i.e. complete separation. Of course, this is not the case, rather the values are around 0.2, hardly 
above 0.23. This is certainly not satisfactory, but one has to keep in mind that the classification will not be 
done with only one feature but that one will go to higher dimensions of the feature space where less 
overlap is expected. 

The dark shaded areas of the triangular matrix K is where KSD values close to “1” are expected, all others 
should be close to zero. If we define a reference matrix R which contains only the desired values 0 or 1 in 
the appropriate positions, then the quality of a feature can be judged by computing the distance between 
the actual matrix and the reference matrix. 

 
Figure1 plot of feature #6 vs. aspect angle, and 

related histograms for5 articulations of  the BMP 
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Table 1  KSD between pdf’s of all 17 targets for feature #6 
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Table 2 shows an example. The smaller this value is, the closer the measured matrix is to the reference. 
Taking this metric, the range extent (feature 1) performs best. 

However, this single value does no longer allow to differentiate between robustness and separability. 
Robustness is the better the closer the intraclass KSD are to zero, and 
separability is the better the closer the interclass KSD are to 1. One can 
therefore average all intraclass KSD (resulting  in K0) and all interclass 
KSD (resulting in K1) and plot the results in K0-K1-coordinates (fig.3). The 
closer a feature is located to the point (0,1) the better its performance will 
be [6]. 
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As one sees from the definitions of the classification features, they all depend at least on one free 
parameter. First of all this is the number of scatterers (Nsc) that is is used to create the MBR on which all 
subsequent computations are performed. Nsc=20 was used for most of the analyses presented here. In 
addition, feature #5 uses a subset of scatterers within the MBR (here 10 out of 20), and feature #6 is the 
power ratio between the strongest and 5th-strongest scatterer within the MBR, thus introducing a second 
parameter for each of them. One can think of using these free parameters in connection with either the 
reference matrix described above, or the point (0,1)  in the K0-K1-plane to somehow optimize the features. 
The values that were used in the original definitions may seem somewhat arbitrary and need a 
justification. Let us begin with the reference matrix and the related distance measure (1). If we vary the 
common parameter Nsc, we can consider d=d(Nsc) and try to find a minimum in a certain reasonable 
interval. Fig.2 shows d(Nsc) for all 10 features 
where Nsc was varied between 10 and 30. As 
one sees, there is almost no dependence on Nsc, 
features 1,3,4,5,7,9,10 show a very small 
decrease of d(Nsc) with increasing Nsc, features 2 
and 8 show an increase of d(Nsc), and #6 is not 
influenced at all. From this one cannot get a 
clear recommendation towards a certain value of 
Nsc. 

Because d(Nsc) cannot distinguish between 
robustness and separability, we now want to 
look to K0 and K1 which describe these two 
properties individually. Fig.3 shows how each 
feature moves in the K0-K1-plane when Nsc is 
varied between 10 and 30. The starting point 
(Nsc=10) is marked by ‘o’ while the final point 
is marked by ‘*’.  

What we hope to find is a tendency to 
approach K0=0 and K1=1. However, none of 
the 10 features follows this pattern.  Rather, K0 
and K1 both tend to increase with increasing 
Nsc (features 1,3,4,7,9)  or are almost constant 
(features 6 and 8). Obviously, it is not possible 
to push K0 beneath a value of ≈0.08.  As one 
recognizes, none of the 10 features comes 
close to the desired locus (0,1) in the K0-K1-
plane for values of Nsc between 10 and 30. 
One must conclude that Nsc offers only a very 
limited optimization potential for the 10 
features under consideration. It seems as if the 
10 features as defined above do not reflect 
sufficiently the geometrical and scatterer 
structure of the targets and therefore are too 
insensitive w.r.t. Nsc. 

 
Figure 2   distance between K and R for 

varying Nsc 

 
Figure 3   K1 vs. K0 for varying Nsc,  
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5  CONFUSION MATRICES 

Another means to assess feature robustness is to apply a generic classification scheme to the available data 
and determine the probabilities of classification (Pc) which can either be probabilities of correct 
classification (Pcc) in the case of the like target class, or probabilities of false alarm (Pfa), for the other 
target classes. This classification is performed for certain sets of features. For this purpose one has to 
create reference feature vectors (or training data) for all available targets or target types. Then a target 
under test is chosen, a test feature vector determined, and the Euclidian distance  

∑
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in feature space computed between this test vector and all reference vectors. The target under test for this 
special feature vector then gets the label of the reference target to which its distance is minimum. This is 
repeated for a large number of test vectors of the respective target under test (either from a limited aspect 
angle interval or - as in our examples - from all aspect angles between 0° and 360°), the scores being 

summed up for all 
reference 

categories. The Pc  
values finally are 
determined as the 
ratio between the 
individual scores 
and the total 
number of test 
vectors. In this 

simple 
implementaion, we 
can talk of a 
“forced decision 
classifier” because 
the non-target case 
is not taken into 
account. 

Out of the 10 
features analysed 

here, subsets of only a few of them were formed for classification purposes. The main requirement for 
feature selection is that they carry independent information, i.e. are statistically independent. There are 
several ways to achieve this goal. A common one is the principal component analysis (PCA, [11])  where, 
dependent on the eigenvalues of the covariance matrix, only the most “meaningful” features or linear 
combinations of features are retained. Another, simpler way is to determine the cross-correlation 
coefficients for all possible pairs of features, and then select only those sets that are essentially 
uncorrelated. The feature sets analysed in the following are the result of this latter procedure. 

How can one create reference feature vectors? For this purpose we refer to results from former analyses 
[1][12] that demonstrated the importance of an independent determination of the orientation of the target 
under test. Thus, comparison has only to be done to reference feature vectors out of a limited aspect angle 
interval instead of [0°, 360°] which considerably increases the classification performance. An achievable 
value for the precision of pose estimation is 10° to 20° or even better. Therefore, for the present analysis, a 
sliding window averaging was applied to the original features over a ±10° interval with respect to each 
aspect angle thus creating the pertinent reference value. Fig.4 shows the effect of this averaging. The 
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Figure 4: Feature 2 (cross-range extent for 8 T72, test values (left) and reference values (right) 
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dependence of the classification result on the width of this interval, i.e. the precision with which the aspect 
angle can be determined, is analysed in [13]. 

Feature #1 Reference target class 
Test target ↓ T72 ZSU 23-4 BMP2 

T72 39.7±12.6 35.8±14.0 24.4±10.2 
ZSU 23-4 27.4±13.6 55.5±16.9 17.2±9.5 

BMP2 26.0±15.0 20.1±11.3 53.8±19.6  

Feature #2 Reference target class 
Test target ↓ T72 ZSU 23-4 BMP2 

T72 47.3±5.3 26.9±5.0 25.8±4.4 
ZSU 23-4 31.7±5.0 39.8±7.2 28.6±3.5 

BMP2 31.2±3.7 24.3±4.4 44.6±4.1  

Table 3 Means and standard deviations of Pc values (%) for range extent (#1) and cross-range 
extent (#2) 

We have now at our disposition a total of 17 test targets (8 T72, 4 ZSU, 5 BMP) and 17 references, 
accordingly. If we want to construct a confusion matrix, we have to choose a triplet of test targets out of 
the three target classes, as well as a triplet of references. For each triplet we have 8⋅4⋅5=160 ways to 
choose from the given data, hence 160⋅160 ways to obtain a confusion matrix. It is not reasonable to 
perform all possible combinations, though. Instead, for a total of 500 randomly generated combinations, 
the confusion matrices were computed and the means and standard deviations of all matrix elements 
determined. By definition, the main diagonale of the confusion matrix contains the Pcc values whereas the 
off-diagonale values represent Pfa. All lines sum up to 100%. The Pc standard deviations can be used as 
another measure of robustness. The smaller they are the less sensitive the classification process is to 
different articulations of a target, and to the influence of selecting test and reference targets. 

As an example (table 3) let us consider the geometrical features #1 (range extent) and #2 (cross-range 
extent). Ft.1 performs quite well in the case of the ZSU and the BMP, but almost fails for the T72. Ft.2, on 
the other hand, performs well for the T72 and the BMP, but less well for the ZSU. What is striking, 
however, are the standard deviations, which are in the range of 4%-7% for ft.2, but between 11% and 
almost 20% for ft.1! Obviously, the range extent is less stable and reliable and consequently less robust 
than the cross-range extent. This is due to self-masking (shadowing) effects that cause scatterers at the rear 
parts of the target to be invisible under many aspect angles. This confirms results from former analysis 
[14]. 

 
Ft. set #1 Reference target class 

Test target ↓ T72 ZSU 23-4 BMP2 
T72 50.0±8.0 25.5±6.0 24.5±5.2 

ZSU 23-4 28.9±9.4 49.8±14.7 21.3±6.2 
BMP2 22.1±4.2 20.1±3.9 57.8±5.0  

Ft. set #2 Reference target class 
Test target ↓ T72 ZSU 23-4 BMP2 

T72 48.3±12.5 28.5±12.2 23.2±8.4 
ZSU 23-4 24.3±14.9 59.3±20.4 16.4±8.4 

BMP2 26.9±15.0 15.4±9.6 57.6±19.4  

Table 4 Means and standard deviations of Pc values (%) for feature set #1 (fts.2,6,8,9) and set #2 
(fts.1,5,7,8,9) 

The second example (table 4) deals with sets of features instead of individual features.  Set #1 consists of 
features 2,6,8,9, set #2 consists of features 1,5,7,8,9. Both show comparable performance for the T72 and 
the BMP, set #2 yields 10% higher Pc for the ZSU. However, set #2 has much higher standard deviations, 
especially for the Pcc(ZSU) the value is 20% which reflects a lack of reliability of the result. It may be 
excellent, but it may as well be insufficient, depending on the random choice of the test and reference sets. 
This striking difference may be due to the use of feature 1 in set #2, and of feature 2 in set #1. 

Another approach to assess classification robustness is suggested by a former result [6] which states that 
the most stable reference (which is not necessarily the one with the best performance) is obtained by 
averaging the references from all available articulations of a certain target class. We will analyse this 
result a little more in-depth.  Averaging the 8 references of T72, 4 of ZSU and 5 of BMP results in one 
overall reference triplet (designated by ORT). Without averaging, we can define a total of 8⋅4⋅5=160 
different reference triplets as pointed out earlier. Thus we can obtain a total of 161 confusion matrices of 
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size 17 x 3 if we test all 17 targets against all possible reference triplets. We then want to compare the 160 
cases of individual reference triplets (IRT) with the ORT case. 

  
Figure 5  ORT (left) vs. <IRT> case for set of features 1,5,7,8,9 

As an example we show the case of a feature set consisting of features 1,5,7,8,9.  Fig.5 shows on the left 
side the ORT case, on the right side the <IRT> case, i.e. mean±std.dev. from all 160 combinations. On the 
abscissa we have the 17 test targets, subdivided by vertical lines into three classes. The ordinate represents 
Pc(%).  We see that all 17 test targets get the highest score in their respective class, although in two cases 
(ORT, T72 #3 and #4) the results are very tight w.r.t a possible misclassification as ZSU. For the ZSU, the 
ORT results are better than the IRT average, but the large std.dev. indicates that there are IRT 
combinations that outperform the ORT case. For the BMP there is no clear tendency: the “weak” cases 
(#13,14,15) get weaker with ORT, the “strong” cases (#16,17) get stronger. For the T72, only #1,2 and 8 
show an advantage for ORT, for the remaining articulations, the IRT shows a larger Pc-difference to a 
possible ZSZ misclassification.  

 

   
Figure 6  <IRT> results for T72 (left), ZSU(center) and BMP(right), set of features 2,6,8,9 
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An easier comparison is shown in fig.6, this time for a feature set consisting of fts.2,6,8,9. The diagrams 
show the results of testing against the T72 reference (left), the ZSU reference (center) and the BMP 
reference (right). The <IRT> results are indicated by their respective symbols and color, including ±1σ-
error bars. The pertinent ORT results are marked by black squares. In all 17 cases, the ORT results are 
better than the <IRT> results, although only slightly for the BMP.  – After looking in many more 
examples of individual features and sets of several features one may summarize that in the “robust” cases 
(characterized by small standard deviations) the ORT is to be preferred to the IRT, whereas in less robust 
cases IRT may be better, although a clear tendency is often missing. Also, one can state that the 
classification results in the ORT case become more homogeneous, i.e. each articulation is recognized with 
essentially the same probability, as was already found in [6]. 

  
Figure 7  greyshade histograms of classification probabilities for two  feature sets 

 

It is interesting to look not only at the mean and standard deviation of the 160 IRT cases but also to study 
their complete histograms (fig.7). These are represented by grey-shading where ‘black’ means highest 
frequency of occurrence. We compare the two feature sets 1,5,7,8,9 (left) and 2,6,8,9 (right) where the 
reference in both cases is the BMP. The abscissa represents the Pc(%) values, the ordinate shows all 17 test 
targets. Set #1 shows some strange phenomena: first, the histograms for test targets #13-16 are bimodal, 
i.e.there is one group of cases with Pc up to 60-80%, another group, where Pc is only around 30% which 
means no classification at all. Second, the histogram in the case of test target #17 is smeared almost 
uniformly between 40% and more than 90%. Clearly, this set of features is not robust because it does not 
provide reliable and reproduceable results. Picking a random set of references can mean anything from 
success to failure. On the other hand, set #2 shows narrow and well defined histograms which indicate 
reproduceability and robustness. 

6  CONSIDERATIONS OF ASPECT ANGLE DEPENDENCE  

We want to conclude with some thoughts on the aspect angle dependence of classification features. For 
certain features, especially geometric ones like range and cross-range extent, it is clear that they will vary 
as a function of aspect angle. For others, like statistical or polarimetric features, it is not clear what 
behaviour to expect, although an aspect angle dependence should be anticipated in every case.  
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An example is shown in fig.8 where a typical 
statistical feature (f4) is represented. F4 is 
defined as the ratio between mean and standard 
deviation of the 20 strongest scatterers 
belonging to the target, its area being declared to 
be the “minimum bounding rectangle” (MBR) 
within each 2-d ISAR image. These ISAR 
images are processed with angular increments of 
about 1/40 of a degree (as a cross-range 
resolution of 0.2m at 35GHz requires an angular 
increment of 1.2°, this means overlapping ISAR 
processing). Thus, an aspect angle interval of 
12° which may be assumed to be a typical value 
for the precision with which the target orintation 
can be determined, gives rise to about 500 
templates. The resulting feature values are 
transformed into a histogram which represents 
the f4 statistics at the respective aspect angle. 

Fig.8 shows the full series of histograms between 0° and 360°. As one sees, the statistics of f4 is by no 
means constant. 

Fig.9 shows this KS distance between the 
overall pdf of f4 (out of 360°) and the 
“local” pdf’s as a function of aspect 
angle. The deviation in this example can 
be as high as 0.5! 

How does this aspect angle dependence 
influence the target recognition process?  
For each potential target, a reference 
vector has to be established in a multi-
dimensional feature space. These 
reference vectors normally are derived 
from tower/turntable or spot SAR 
measurements if available. The target that 
has to be classified provides a test vector 
(or a series of test vectors during the time-
on-target) that now is compared to the 
available reference vectors. A certain 

distance measure in feature space is defined, and the reference which is closest to the test vector 
determines the target class. 

Now, if no information is available on the target orientation and the variability of the respective feature 
statistics, the reference vector has to be determined from the [0°, 360°] interval with no preferred aspect 
angle. Consequently, this reference can be unnecessarily far away from the true reference that would apply 
for the present target aspect. This could result in a misclassification and hence a degradation in 
performance. 

Fig.8 feature #4 histograms for sliding 
windows  

Fig.9 KS distance between global and local f4 pdf‘s 
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This effect is demonstrated in fig.10. As a simple 
example, a 2-dimensional feature space is shown 
defined by f4 as above, and f5, where f5 is the 
fraction of backscatter energy that is contained in 
the 20 sttrongest scatterers as compared to the total 
energy within the MBR. The red cross marks the 
overall (i.e. averaged over 360°) reference vector 
with the pertinent standard deviations “σ” of 
features f4 and f5. The irregular line shows the 
behaviour of the “local” reference as a function of 
aspect angle, where each local reference is 
averaged over a sliding 12° interval. As one sees, 
the aspect angle dependent reference vectors can lie 
far outside the 1σ-ellipse around the overall 
reference vector so that using the latter clearly may 
lead to erroneous classification. All this underlines 
the importance of an independent  determination of 
the target orientation to initialize the ATR process, 

as was already found in former analyses [1][2][5]. More details can be found in [13]. 

7  SUMMARY AND CONCLUSIONS 

Three target types, namely T72, ZSU 23-4 and BMP-2 were measured in a tower/turntable configuration 
in 8, 4 and 5 articulations, respectively. Based on 2-D ISAR images in the VV and VH channel, a set of 10 
geometric, statistical, structural and polarimetric features was calculated which was used to study the 
robustness of classification. The Kolmogoroff-Smirnov distance measure between histograms (pdf’s) was 
used to define a metric that at the same time allows to quantify intra-class robustness and inter-class 
separability for an individual feature. For sets of several features, a simple classification approach in 
connection with a reference confusion matrix allows to assess the robustness of classification. At the same 
time this reference matrix can be used to maximize robustness by varying the free parameters of the 
feature definitions such that the difference of the measured confusion matrix with respect to the reference 
matrix is minimized. It was found that the number of scatterers Nsc does not offer a good potential for 
optimization. 

As former analysis has shown the importance of an independent pose estimation of the target under test, 
reference feature vectors were computed as sliding window averages over +/-10° aspect intervals. It could 
be demonstrated further, that averaging this reference over all available target articulations improves the 
classification performance as compared to a reference that is based on one articulation only. 

The set of 17 measurements was used to establish a statistics of the confusion matrices. The standard 
deviations of the Pc values vary widely depending on the type of feature or feature set. They lend 
themselves to be used as another metric to characterize robustness. 

Finally, it was demonstrated that the feature statistics may be strongly dependent on the aspect angle of the 
target. As a consequence, the ATR performance has to be improved by independently determining the 
target orientation, e.g. by means of a Hough transform or pattern matching.  

Fig.10  behaviour of features 4&5 references 
between 0° and 360° 
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